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ABSTRACT 
 

All kingdoms of life rely on cobalamin, a coenzyme produced by a subset 

of Bacteria and Archaea. Cobalamin belongs to a family of molecules called 

cobamides. Cobamides all share a tetrapyrrole corrin ring which is joined to one 

of 17 known naturally occurring lower bases. Until now, little work has explored 

why one type of cobamide is produced over another. This research explores 

cobamide production under different redox conditions: glucose fermentation, 

lactate fermentation, methanogenesis, sulfate reduction, nitrate reduction, and 

iron reduction. Homogenized sediment from Third Creek (Knoxville, Tennessee) 

was used for initial microcosms grown under each redox condition and fifth 

generation or later transfers were used to analyze cobamide production. Type 

and quantity of cobamide produced under each condition was distinct. Cobamide 

production was normalized between redox conditions by comparing total 

cobamide produced to the amount of substrate or electron acceptor consumed. 

Glucose and lactate fermenters both resulted in 5-hydroxybenzimidazole 

cobamide and methylbenzimidazole cobamide. Methanogens produced 

exclusively methylbenzimidazole cobamide. Sulfate reduction and nitrate 

reduction both produced cobalamin. No detectable cobamide was produced by 

iron reduction. Maintenance of redox conditions were verified by monitoring the 

reactants and products for each redox process. This work demonstrates that 

redox conditions shape the cobamide pool. The results have important 

implications for microbial ecology including in bioremediation systems where 

corrinoid-auxotrophic bacteria require certain types of cobamide for metabolic 

processes that break down pollutants.  
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PREFACE 

 

This work is a continuation of a project begun by Dr. Burcu Şimşir, a 2015 PhD 

graduate of the Löffler lab. Work she completed that contributed to this project 

has been attributed to her where applicable.  
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Microbial Cobamide Production 

Cobalamin is an essential enzyme prosthetic group (co-factor) in all 

kingdoms of life, yet it can only be de novo synthesized by some bacteria and 

archaea. Microbes require cobamides for essential biological functions including 

methyl group transfer, carbon skeleton rearrangement, and organohalide 

respiration (Fang, Kang, & Zhang, 2017; Yan et al., 2018). Cobalamin is broadly 

studied for its impact on animal and human health, but the other sixteen known 

cobamides remain largely unexplored (Warren, Raux, Schubert, & Escalante-

Semerena, 2002; Yan et al., 2018).  

Cobamides other than cobalamin are largely understudied since 

cobalamin is generally considered the only cobamides relevant to human health 

(Roth, Lawrence, & Bobik, 1996). Much of the detectable corrinoid produced in 

biological systems, including the human gut, is not cobalamin, and less than 2% 

of corrinoid found in human feces is cobalamin (Allen & Stabler, 2008). In dairy 

cattle, the amount of non-cobalamin cobamides present in the digestive tract was 

found to exceed the amount of cobalamin (Girard, Berthiaume, Stabler, & Allen, 

2009).  

In recent years, new research has shown that these other cobamides do 

serve biological functions for microbes and are therefore relevant for human and 

animal health (Keller et al., 2018; Mok & Taga, 2013; Yan et al., 2018). Many 

microbes are capable of producing multiple types of cobamides, but it is unknown 

what causes them to produce one type over another (Crofts, Seth, Hazra, & 

Taga, 2013). Cobamides are energetically costly so it would be unreasonable for 

an organism to produce such a molecule if it serves no purpose. Currently there 

are no known altruistic cobamide producers (Dominique Turkowsky, 2018; 

Shelton et al., 2018; Warren et al., 2002). Microbes including Lactobacillus and 

E. coli have been reported to uptake up to 11 different cobamides to meet 

metabolic requirements; many microbes have the ability to scavenge complete 

cobamides or cobamide precursors from the environment and remodel them into 
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functional types (Yan et al., 2016; Yi et al., 2012). Dehalococcoides mccartyi 

(Dhc) is one such corrinoid auxotroph that requires cobamides for its energy 

metabolism, which is limited to organohalide respiration. 

Corrinoid Nomenclature 

The term corrinoid refers to any molecule built on a corrin ring 

("Nomenclature of Corrinoids," 1975) (Figure 1-1). A complete, functional 

cobamide consists of four pyrole rings joined together to form a corrin ring with a 

central coordinated cobalt atom. This tetrapyrrole ring is joined by a nucleotide 

loop to a lower base and an upper ligand, denoted as an R group (Figure 1-2). A 

cobamide lacking a lower base is referred to as a cobinamide. Cyanocobalamin, 
synthetic vitamin B12, carries a cyanide as upper ligand and does not occur in 

nature, but many organisms can replace the cyanide group with a methyl, 

adenosyl, or hydroxyl group to form biologically functional cobalamin (Froese & 

Gravel, 2010). Cobamides with the different upper ligands are specifically 

referred to cyanocobalamin, adenosylcobalamin, or hydroxylcobalamin, 

respectively. The R group is noted in green as part of the cobalamin structure 

shown in Figure 1-1.  

Seventeen naturally occurring cobamides differing in their lower bases 

have been discovered to date (Yan et al., 2018; Yi et al., 2012). While the 

majority of bacteria require cobamides for their metabolism, only about one third 

possess the genes required for complete de novo cobamide biosynthesis 

(Shelton et al., 2018). Cobamide lower bases consist of three types: 

benzimidazolic, phenolic, or purinyl. Benzimidazolic cobamide lower bases 

include dimethylbenzimidazole, the lower base of cobalamin. Phenolic lower 

bases are exclusively produced by Sporomusa ovata (Mok & Taga, 2013). The 

phenolic lower bases cannot coordinate to the central cobalt atom; these 

cobamides are permanently in the “base off” configuration that is not usable for 

most metabolic processes. The coordination of the lower base to the central
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Figure 1-1.Corrinoid nomenclature. Corrinoids include any model built on a corrin ring, while cobamides specifically refer to a corrinoid with a 
nucleotide loop ending in one of 17 naturally occurring lower bases. Cobalamin is a cobamide with dimethylbenzimidazole as its lower base. 
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Figure 1-2. Structure of cobalamin with examples of lower bases, highlighted in green. R, in blue, 

represents where an upper ligand would coordinate with the central cobalt atom.  
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cobalt atom, the “base on” configuration, provides the functionality of the 

cobamide in most reactions the cobamide is used for (Roth et al., 1996) 

Benzimidazolic and purinyl lower bases can form an active “base on” 

configuration while phenolic cobamides are permanently in a “base off” 

configuration (Mok & Taga, 2013). 

Functions of Cobamides 

Cobamides serve an abundance of roles in nature including carbon and 

nitrogen metabolism, one-carbon metabolism via the Wood-Ljungdahl pathway, 

and reductive dechlorination (Shelton et al., 2018). The best known role is methyl 

group transfer in methionine synthesis, a reaction important to human health 

(Roth et al., 1996). Cobamides’ role in Acetyl CoA synthesis is their best-known 

use in anaerobes as part of the Wood-Ljungdahl pathway (Zhuang et al., 2014). 

Cobamides are also critical to methanogens for their function in methyl group 

transfer in methanogenesis (Roth et al., 1996). Organochlorine reductive 

dechlorination, utilized for bioremediation of toxic chlorinated solvents, can only 

be carried out using certain types of cobamides and the type of cobamides 

affects the rate of dechlorination (Yi et al., 2012). Understanding the conditions 

that lead to production of cobamides usable by organochlorine-respiring bacteria 

can improve the efficacy of bioremediation treatment. 

Organochlorine Cycling 

Organochlorines in pristine environments result from both biotic and 

abiotic processes. Many microbial taxa produce organochlorines and most of 

these compounds, including vancomycin and  have only been coincidentally 

discovered in the last forty years (McIntyre, Bull, & Bunch, 1996). This is due to 

increased interest in finding naturally produced antibiotics (Gribble, 2010). Before 

discussing microorganisms that respire organochlorines, understanding why 

organochlorines are produced by other organisms can help to unravel why these 

organochlorine-respiring microorganisms came to exist. 
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Ocean-dwelling organisms produce of a plethora of natural 

organohalogens. While the primary use of these compounds is for defense, some 

organisms such as sea sponges produce organohalogens for their survival and 

may live in a mutualistic relationship with bacteria that can respire them 

(Abrahamsson, Ekdahl, Collen, & Pedersen, 1995; Gribble, 2010; Liu et al., 

2017). Other marine animals that produce organohalogens include tunicates, 

nudibranchs, and soft coral (Gribble, 2010). While the majority of these marine 

organohalogens are brominated, marine algae Asparagopsis taxiformis and 

Falkenbergia hillebrandii show tetrachloroethene (PCE) and trichloroethene 

(TCE) formation rates that are high enough to be included when formulating 

global organochlorine production rates (Abrahamsson et al., 1995). Terrestrial 

organisms also produce organohalogens, more specifically organochlorines, 

although at a lower level than terrestrial organisms (Leri & Myneni, 2010). 

Chloromethane is naturally produced by many food crops as a nematicide and 

this chemical is available commercially for this purpose (Gribble, 2010).   

 Fungi in soil produce organohalogens and play a role in the incorporation 

of organochlorines into humus. Basidiomycetes are notable for their ability to 

synthesize organohalogens, and some produce up to 3% of their biomass dry 

weight as organically bound halogens (de Jong & Field, 1997).  Basidiomycetes 

are part of the decomposition of forest leaf litter and may make a significant 

contribution to the natural pool of organochlorine (Gribble, 2010).  

Basidiomycetes have also been shown to degrade chloroform and PCE 

under oxic conditions and could potentially be applied in bioremediation (de Jong 

& Field, 1997). Partly due to difficulty in identifying organochlorine species in low 

concentrations in environmental samples, the terrestrial chlorine cycle and role of 

anaerobic bacteria remains largely understudied. The most notable example of a 

bacterium producing an organochlorine is Amycolatopsis orientalis which 

produces the chlorinated antibiotic, vancomycin (McIntyre et al., 1996). 

Organochlorines can also be released from abiotic natural sources such as 

volcanoes, fires, rocks, and minerals (Gribble, 2010).  
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Chlorinated ethenes are one of the most widespread global groundwater 

contaminants. Although these chemicals are naturally present in small 

concentrations, humans have caused their pervasion in the environment. These 

highly volatile organic substances are toxic carcinogens that threaten human 

health and safety (Brandt-Rauf et al., 2012). Produced widely during the 20th 

century, attention was first brought to chlorinated solvents and groundwater 

quality when New Orleans residents complained of “chemical” and “oily” flavors 

in drinking water that was sourced from the Mississippi River; the flavor was 

attributed to dissolved organic compounds whose exact identity could not be 

determined at the time because of limited technology (Pankow & Cherry, 1996). 

When released into groundwater, chlorinated ethenes and other 

chlorinated solvents often persist indefinitely until their remediation is directly 

addressed. This persistence is due to these solvents being more dense than 

water and having low solubility (Pankow & Cherry, 1996). When the solvents pool 

at the bottom of an aquifer, these solvents form dense non-aqueous phase 

liquids, or DNAPLs, which are extremely persistent and difficult to remove.  

Trichloroethene (TCE) is an organic solvent broadly introduced into the 

environment during the 20th century. Used as an industrial solvent and 

degreaser, it is easily recycled, noncorrosive, and nonflammable. It was even 

used as a general anesthetic for minor procedures and veterinary medicine 

(Doherty, 2000). Due to its nonflammable nature, it was the solvent of choice for 

dry cleaning. During World War II, its use exploded in the United States. Its 

toxicity became recognized in the 1960s and the 1980s its environmental 

regulation began. As states begin to outlaw TCE for this use, it has been widely 

replaced in dry cleaning and degreasing with its cousin perchloroethene (PCE), 

also referred to as tetrachloroethene. While less toxic than TCE, PCE has been 

linked to an increase risk of stillborn births (Aschengrau et al., 2018) PCE is still 

used as a solvent in the dry-cleaning industry. 

Also of concern is vinyl chloride (VC). Of the chlorinated ethenes it is the 

most toxic (Brandt-Rauf et al., 2012). Globally it is produced as a precursor to 
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polyvinyl chloride, with 90% of vinyl chloride produced globally being for this 

purpose (Brandt-Rauf et al., 2012). Disposed polyvinyl chloride in landfills is 

suspected as a source of vinyl chloride in landfill drainage. For many years, vinyl 

chloride was the largest challenge in implementing bioremediation systems 

detoxifying chlorinated ethenes as the systems frequently stalled while 

performing the vinyl chloride to ethene reductive dechlorination step (Figure 1-3).  

 As discussed previously, microorganisms that can respire chlorinated 

ethenes and hundreds of other chlorinated compounds have existed in pristine 

environments long before chlorinated solvents were produced on an industrial 

scale through the 20th century. The majority of organochlorine-respiring microbes 

have been isolated from contaminated sites (Bowman, Nobre, da Costa, Rainey, 

& Moe, 2013; J. He, Ritalahti, Aiello, & Löffler, 2003; Sung et al., 2006). The high 

concentrations of chlorinated solvents at these sites provide reductively 

dechlorinating bacteria with a niche allowing for larger populations than in pristine 

sites without anthropogenic organochlorines. 

Dehalococcoides mccartyi 

Dehalococcoides mccartyi (Dhc) is a remarkable bacterium with a highly 

streamlined genome. It is disc-shaped and a mere 0.5 μm in diameter (Frank E. 

Löffler et al., 2013; Maymo-Gatell, Chien, Gossett, & Zinder, 1997). Because of 

its small genome, it has many specific growth requirements even if grown as a 

mixed culture. In addition to being a strict anaerobe, Dhc’s metabolism relies on  

reductive dechlorination of organochlorine molecules and the presence of  

 

Figure 1-3. Reductive dechlorination pathway of tetrachloroethene to ethene from Máymo-Gatell, 
Chien, Gossett, & Zinder, 1997. 
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hydrogen as an electron donor. Without organochlorines present as an electron 

acceptor, Dhc cannot grow as it relies solely on the organochlorine as a terminal 

electron acceptor for energy conservation. Fortunately, this specificity makes it 

an excellent candidate for bioremediation. 

 Dhc is corrinoid-auxotroph meaning that it cannot produce its own 

cobamide required for reductive dechlorination. Overcoming this obstacle is a 

challenge in using Dhc for bioremediation. There are two possibilities of how Dhc 

obtains the corrinoids needed for reductive dechlorination. The first is that it relies 

upon other organisms in its environment to produce corrinoids. Cobalamin is the 

most widely studied cobamide as it is the only one shown so far to have 

significant biological activity in humans (Yi et al., 2012). The organisms that 

cannot synthesize their own cobamides must obtain them from their environment. 

In a lab setting, the easiest way to provide cobamide to Dhc is to simply add 

supplemental vitamin B12 to the medium. Additionally, Dhc will not utilize just any 

type of cobamide. This is reflected by an increased reductive dechlorination rate 

and cell density in the presence of certain cobamides (Yan et al., 2016).  

A second pathway by which Dhc can obtain its cobamide of choice is 

through corrinoid scavenging. Interestingly, Dhc contains some of the genes for 

corrinoid synthesis in its small genome which it can use to modify existing 

cobamide in its environment(Yi et al., 2012). Other bacteria present in 

dechlorinating microbial communities such as acetogens, methanogens, and 

sulfate reducing bacteria are cobamide producers, but often they do not produce 

cobamides that are immediately usable by Dhc. Dhc can scavenge and remodel 

these cobamides for use in reductive dehalogenation (Men et al., 2015).   

Dhc strain 195 has been shown to only be able to utilize three 

benzimidazolyl cobamides but can remodel many different cobamides into one of 

the three usable types when provided with complete cobamides and free lower 

bases (Yi et al., 2012). It is important to emphasize that the appropriate lower 

base must be already present in the environment and cannot be synthesized by 

Dhc. The mechanism by which Dhc transports lower bases, specifically 
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dimethylbenzimidazole, the lower base of cobalamin, from its environment into 

the cell is not well understood. The pathway through which Dhc remodels the 

corrinoid has been proposed (Yi et al., 2012). It is also possible to force bacteria 

to synthesize specific corrinoids through guided biosynthesis in which they are 

provided with an excess of the desired lower base (Yan, Im, Yang, & Löffler, 

2013). In this case, guided biosynthesis may be used to help Dhc synthesize 

cobalamin. Additionally, Dhc has been shown to continue to modify corrinoids 

even if ample cobalamin, its preferred corrinoid, is present (Yi et al., 2012).  

When provided with ample resources in its environment, including 

cobalamin, Dhc can be grown as a pure culture. Co-culture studies have shown 

that Dhc has higher reductive dechlorination rates when grown with other 

microbes (Men et al., 2014). In mixed culture, Dhc primarily grows with 

acetogens and methanogens that provide it with cobalamin and other nutrients 

(Jianzhong He, Holmes, Lee, & Alvarez-Cohen, 2007). Of three Dhc-containing 

microbial consortia currently maintained in North America, Donna II, KB-1, and 

ANAS, completed genomic analysis of each of these consortia found that 

although they vary phylogenetically, the have similar relative abundances of 

different metabolic pathways (Hug, Beiko, Rowe, Richardson, & Edwards, 2012). 

Each consortium contained Firmicutes, Euryarchaeota, and Gamma-

Proteobacteria which all appeared to have supporting roles for Dhc growth 

including corrinoid production. This study determined the roles of these 

supporting microbes which is important for understanding how Dhc grows in 

nature and how its growth can be better supported in bioremediation. 

Applications for Bioremediation  

Remediation of chlorinated contaminants, especially DNAPLs, is an 

expensive and labor-intensive process. Many physical remediation processes 

such as low permeability walls or source-zone containment simply isolate the 

contaminated area from the main aquifer and do not actually remove the 

contaminant. The “pump-and-treat” method of removal which involves pulling 
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water out of a groundwater plume through a capturing well, treating, and 

returning it, is expensive with mixed results. This method removes vast amounts 

of groundwater while being unable to totally remove contaminants. For example, 

a pump that removes 1000 L/min may only extract 2 to 200 drums of DNAPL per 

year (Pankow & Cherry, 1996). Additionally, the actual total amount of DNAPL in 

a plume is rarely known.  

 Biological remediation methods, or bioremediation, show much more 

promise for actually removal of chlorinated contaminants than physical methods. 

Bioremediation is also effective for cleaning up residual contaminants after they 

have been mostly removed by mechanical methods. The most common 

bioremediation method is biostimulation, adding an electron donor such as 

vegetable oil or lactate to a contaminated aquifer though a monitoring well. 

Existing fermentative bacteria break these donors down into volatile fatty acids 

and hydrogen which are usable by Dhc and other organochlorine-respiring 

bacteria to break down pollutants such as TCE into benign ethene. 

Supplementation of existing bacteria with Dhc, or bioaugmentation, has also 

been shown to speed up the bioremediation process (Scheutz et al., 2008).   

 While biostimulation relies on native populations of dechlorinating 

bacteria, bioaugmentation is a bio remediation strategy in which a culture is 

injected into a contaminated site along with an electron donor. Bioaugmentation 

and biostimulation are often combined. Dhc occupies a niche unfilled by other 

bacteria in that it can respire the chlorinated solvents which allows it to grow 

successfully in contaminated groundwater (Adrian & Löffler, 2016). Today 

cultures containing Dhc are commercially available for remediation of chlorinated 

solvents. Initially these cultures faced the challenge of being too low in Dhc 

concentration; an exorbitant amount of culture was needed to make an 

appreciable difference in the Dhc population at the remediation site. A 

concentration of 107 cells/L is the target concentration for bioaugmentation.  

Current commercially available cultures contain 1011 cells/L (Adrian & Löffler, 

2016) 
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 Although bioremediation of chlorinated ethenes has been implemented 

with success, many challenges remain for the future. Dhc cannot grow in aquifers 

of a low pH and fractures in bedrock around contaminated aquifers can make it 

difficult to pinpoint the source of contamination. Heterogeneity of aquifers can 

complicate bioremediation; however, this is also a problem with physical-

chemical remediation methods. These are all issues that will be addressed by 

engineers and microbiologists in the future in order to create safe and 

sustainable bioremediation methods to lessen pollution in water sources.      
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CHAPTER TWO  
METHODS 
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Sample Collection and Microcosm Establishment 

Sample collection and establishment of enrichment cultures was 

completed in prior work (Şimşir, 2016). Briefly, samples were collected from 

chlorinated solvent-contaminated streambed sediment from Third Creek in 

Knoxville, TN using direct push tools. Aseptic techniques were used during 

collection to the fullest extent possible in a field environment. Samples were 

placed into 1-quart mason jars, covered with creek water, and transported in a 

cooler with ice. In lab, sediment samples were homogenized in an anoxic 

glovebox filled with nitrogen and hydrogen gas (97%/3% v/v) then stored at 4° C.  

 Microcosms were established under each of the conditions studied: 

Glucose fermenting, lactate fermenting, nitrate reducing, and iron reducing. The 

exception was the methanogenic condition, which was derived from a glucose 

fermenting enrichment transfer culture.  

Glass serum bottles (160 mL) containing 100 mL anoxic of cobamide-free 

mineral salts medium prepared as described (F. E. Löffler, Sanford, & Ritalahti, 

2005). Medium contained a salt solution with a final concentration of 1.0 g/L 

sodium chloride, 0.5 g/L magnesium chloride hexahydrate, 0.2 g/L potassium 

phosphate, .3 g/L each ammonium chloride and potassium chloride, and 0.015 

g/L calcium chloride dihydrate. The included tungsten selenium solution was a 

final concentration of 6 µg/L sodium selenium trioxide pentahydrate, 8 µg/L 

sodium tungstate dihydrate and .5g/L sodium hydroxide. A trace element solution 

in hydrochloric acid (.025% solution w/w) was added with final amounts of 15 

mg/L ferrous chloride tetrahydrate, .19 mg/L cobalt(II) chloride hexahydrate, .1 

mg/L magnesium dichloride tetreahydrate, 70 µg/L zinc diochloride, 6 µg/L boric 

acid, 36 µg/L sodium molybdate dihydrate, 24 µg/L nickel diochlride hexahydrate, 

and 2 µg/L copper dichloride dihydrate. L-cysteine hydrate and sodium disulfide 

nonohydrate were added to a final concentration each of 2 mM. Resazurin, .25 

mL/L of a .1% solution, was added as a pH indicator. Medium was buffered with 

2.52 g/L sodium bicarbonate. 
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 Redox conditions were established by adding 10 mM amorphous FeOOH, 

5 mM nitrate (as NaNO3), or 5 mM sulfate (as NaSO4) as electron acceptors and 

5 mM lactate as an electron donor. The glucose fermenting microcosm was 

amended with 10 mM glucose. 2-bromoethanosulfonate (2 mM) was added to 

each microcosm to inhibit methanogenesis except in the glucose fermenting 

microcosm that the methanogenic enrichment was derived from (Webster et al., 

2016). Autoclaved controls were included for each condition. Microcosms were 

transferred repeatedly while maintaining the respective redox conditions in order 

to obtain sediment-free enrichments. The transfer cultures received 5 mM 

acetate and 10 mL hydrogen gas as electron donor instead of lactate, except for 

the lactate fermenting and glucose conditions which continued to receive only 

lactate or only glucose. All cultures were incubated statically in the dark at 30° C.  

Large Scale Cobamide Enrichment Cultures 

For corrinoid analysis, all experimental cultures were grown in duplicate 

with the same defined medium described above for microcosm establishment. All 

cultures were grown in 2-L glass bottles with 1.6 L of medium and the headspace 

consisted of a 80% N2/20% H2 gas mixture. These large volumes were required 

to produce sufficient biomass for corrinoid extraction.  

The glucose fermenting enrichment cultures were grown in 300-mL bottles 

with 200 mL of medium. These were the only enrichments grown in smaller 

bottles. Enrichment cultures were inoculated with 4th or 5th generation transfer 

cultures from the respective redox condition and were incubated statically in the 

dark at 30° C. Glucose was reamended (10 mM) when glucose was no longer 

detectable with a glucose test strip (Precision Laboratories, Cottonwood, AZ). 

Upon harvest when glucose was depleted a second time, all cultures were 

checked for production of methane to confirm that BES had successfully inhibited 

methanogenesis. 

Nitrate reducing enrichment cultures were amended with 5 mM sodium 

nitrate, 10 mM sodium acetate, 2 mM BES, and 120 mL hydrogen gas. Cultures 
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were monitored every other day for nitrate and nitrite via ion chromatography and 

checked for nitrous oxide via gas chromatography every other day. MQuant 

nitrate/nitrite test strips (Sigma-Aldrich, St. Louis, MO) were also used as a quick 

method to determine if nitrate had been depleted when cultures were sampled 

daily. Cultures were harvested once nitrate was depleted (<.1mM remaining). 

 Sulfate reducing cultures were amended with 10 mM sodium acetate, 2 

mM BES, 10 mM sodium sulfate, and 120 mL hydrogen gas. Sulfide was 

measured weekly using a colorimetric assay and quantified using a 

spectrophotometer as described in analytical procedures. Lactate-fermenting 

cultures were amended with 10 mM lactate and 2 mM BES. Cultures were 

sampled daily for lactate measurement and amended with an additional 10 mM 

lactate when the initial lactate was depleted to <0.5mM.  

Methanogenic cultures were amended with 10 mM acetate and monitored 

twice weekly for methane production via gas chromatography.   

Cobamide Extraction and Analysis 

Cobamides were extracted as described (Yan et al 2013). Cells from 

enrichment cultures were collected by centrifugation at 10,000 rpm for 20 

minutes with a PTI® F10S-6x500Y rotor (Thermo Fisher Scientific, Waltham, MA) 

at room temperature. Cell pellets were collected in 300 mL batches of culture 

fluid in 500 mL plastic bottles and resuspended in a total of 10 mL of deionized 

water. Potassium cyanide (KCN) was added from a 100 mM stock solution to a 

concentration of 20 mM and the pH was adjusted to 5-6 using 3% (v/v) acetic 

acid. The solution was heated in a boiling water bath for 20 minutes and 

centrifuged in 50 mL conical plastic tubes for 15 minutes at 4° at 10,000 rpm with 

a Fiberlite® F13 14x50cy rotor (Thermo Fisher Scientific, Waltham, MA). The 

supernatant, which contained the corrinoids, was collected and the pellet was 

extracted again. The supernatants from both extractions were combined. A Sep-

Pak C18 Cartridge (Waters Corporation, Milford, MA) was primed with 3 mL 

methanol and flushed with 60 mL deionized water. The combined supernatant 
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was loaded onto the cartridge dropwise and the column was rinsed with an 

additional 3 mL water. Corrinoid was eluted from the column using 3 mL 

methanol. The sample was dried to remove all remaining methanol and 

suspended in 200 or 300 µL deionized water.  

Analytical Geochemical Measurements 

 Nitrate and nitrite were quantified using ion chromatography. The Dionex 

ICS-2100 system was equipped with a Dionex IonPac® AS18 4x250 mm 

analytical column at 30° C. Potassium hydroxide (10 mM) was used as an eluent. 

For nitrate, the limit of detection was .1 mM and for nitrite limit of detection was 

.01 mM. Both colorimetric assays used to measure sulfide or ferrous/total iron 

concentrations used a Thermo Scientific Spectronic 20D+ spectrophotometer to 

measure light absorbance of resulting precipitates from each method (Cord-

Ruwisch, 1985; Riemer, Hoepken, Czerwinska, Robinson, & Dringen, 2004). Iron 

measurements were reported as a ratio of ferrous to total iron and sulfide was 

detectable down to .05 mM.  

 Gases were measured using gas chromatography (GC). Nitrous oxide 

was measured with an Agilent 7890A gas chromatograph equipped with a HP-

Plot Q column (30 m by 0.320mm, 20 µm film thickness), and a micro-electron 

capture detector. Manual 0.1 mL gas headspace samples were injected using a 

.1 mL plastic syringe with a 25g needle. Methane was also quantified using 0.1 

mL headspace samples on a separate Agilent 7890A gas chromatograph with a 

DB624 column (30 m x .53 mm, 3 µm film thickness) with a flame ionization 

detector.  

 Lactate, acetate, propionate, and glucose were both quantified with an 

Agilent 1200 series high performance liquid chromatograph (HPLC). Organic 

acids used an HPX-97H column at 30° C while glucose used a ZORBAX 

Carbohydrate column (4.6 by 150 mm, 5 µm film thickness) at 80° C. Both 

methods used deionized distilled water as an eluent and a 20 µl injection volume. 

Cobamides were identified using an Agilent 1200 series high-performance liquid 
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chromatography system (HPLC) equipped with an Eclipse XBD-C18 5 µm 

column and diode array detector set to detect wavelengths of 361 and 355 nm. 

An auto-injector sampler was used with a 20 µl injection volume. Eluents were 

0.1% formic acid in water (eluent A) and 0.1% formic acid in methanol (eluent B) 

at a flow rate of 1 mL/minute. Initial flow is 82% A/18% B and B is increased 

linearly to 80%/20% at 34.0 minutes, then increased linearly to 10% A/90% B at 

36.0 minutes, held for 3 minutes, and decreased linearly to 82%/18% at 41 

minutes. 

 All IC, GC, and HPLC peak areas were normalized to standard curves for 

each substance. Each standard curve was created using at least 5 samples of 

known concentrations ranging from 0.1-10 mM. For propionate, acetate, nitrate, 

nitrite, ammonium, sulfide, and sulfate, sodium salts of each chemical were 

added into a 100 mL (total volume) 1M stock solution in deionized distilled water. 

The stock solutions were serially diluted to 10, 5, 2, 1, .5, .2, and .1 mM 

solutions. At least 5 of these stocks were used to generate standard curves. The 

stock solution for glucose was made in an identical manner. Lactate standards 

were made by weighing 60% sodium lactate syrup (17.96 g) and adding it to 

deionized distilled water and bringing the solution to 100 mL total. Gas standards 

for nitrous oxide and methane were prepared in 2L glass bottles containing 1.6L 

deionized distilled water to reflect enrichment culture volume. Four bottles for 

each gas were injected with 1, 10, 50, or 100 mL of nitrous oxide or methane gas 

at room temperature and pressure. Gas volumes were converted to molar 

amounts using the ideal gas law. 
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CHAPTER THREE  
RESULTS 
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Enrichment Culture Growth 

Reactants and products of each process for each enrichment culture were 

monitored in order to show that cobamides produced were due to the intended 

redox condition and to provide a basis for cobamide quantification. All cultures 

were checked for methane at the end of each experiment before cultures were 

harvested for corrinoid extraction in order to exclude the possibility that 

methanogenesis had occurred in the non-methanogenic enrichments. 

Glucose-fermenting cultures completely or nearly completely (<.5mM 

glucose remaining) depleted glucose by 24 hours, were reamended with 10 mM 

glucose, and harvested for cobamide extraction t 64 hours when glucose was 

again depleted (Figure A-1). Some propionate (<1 mM) was produced from a 

total of 20 mM glucose added to the system. Lactate and acetate, direct products 

of glucose fermentation, were also monitored.  

Methanogenic cultures were harvested after 31 days at which time 

methane production had begun to level off (Figure -2). Methane production 

steadily increased up until this time.  

Lactate fermentation cultures were amended with 10 mM lactate, although 

measured initial lactate was lower. Measured fermentation products of lactate 

were acetate and propionate (Figure A-3). Lactate was reamended after 72 hours 

before lactate was totally depleted (<2mM lactate remaining). After 96 hours, 

lactate was depleted to under .5 mM and cultures were harvested for cobamide 

extraction.  

Nitrate cultures were amended with 5 mM nitrate (Figure A-4). Even with a 

low limit of detection, .01 mM, nitrite was scarcely detectable. Detectable nitrous 

oxide production remained low at <.2 mM. The possibility of dissimilatory nitrate 

reduction to ammonium (DNRA) in denitrifying cultures could not be completely 

excluded; a supporting experiment inhibiting N2O reduction with 6 mL acetylene 

gas, used to inhibit reduction of N2O to nitrogen gas, resulted in production of 

both nitrous oxide and ammonium in two of five replicates (Smith, Firestone, & 
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Tiedje, 1978). Three replicates showed no increase in ammonium concentration 

and a stoichiometric amount of nitrous oxide production from denitrification. 

Sulfate reducing experiments had a long lag phase of 59 days; no 

increase in the sulfate reduction product, hydrogen sulfide, was detectable before 

this point. Cultures were monitored weekly for sulfide and showed only small 

(<0.05 mM) amounts of sulfide. Cultures were harvested after 86 days after 

reaching 4.1 mM and 4.6 mM sulfide, respectively, which was near stoichiometric 

production of sulfide from the 5 mM sulfate originally added and indicated that 

sulfate was nearly, but not completed depleted with under .5mM sulfate 

remaining (Figure A-5).  

Iron reduction in in iron reducing enrichment cultures was quantified as a 

ratio of ferrous: total iron (Figure A-6). This ratio increased to 0.6 (ferrous: total 

iron) at 40 days. Cultures were grown past the 40-day mark in order to increase 

this ratio, but it continued to fluctuate past this point and never exceeded 0.7.  

Cobamide Production  

 Limits of detection for seven cobamides were obtained from standard 

curve calculations. Benzimidazole cobamide (Ben-cba) was not detectable in 

concentrations below 1 mM, 5-hydroxybenzimidazole cobamide (5-OH-Ben-cba) 

was not detectable below 0.5 mM, and cobalamin (dimethylbenzimidazole 

cobamide, DMB-cba), methylbenzimidazole cobamide (MeBen-cba), and purinyl 

cobamide were both detectable down to 0.1 mM. Phenolic cobamide and p-

cresol were detectable to 1 mM.  

Cobamide production results are summarized in Figure 3-1 and listed 

individual enrichment cultures in Table 3-1. Product or reactant used to quantify 

cobamide is listed in Table A-1. Glucose fermentation and lactate fermentation 

produced both 5-OH-Ben-cba and MeBen-cba. The dominant cobamide 

produced in enrichments performing glucose fermentation was MeBen-cba, 

averaging 40.15 nmol MeBen-cba/mmol glucose consumed. Lactate 

fermentation also produced MeBen-cba in much smaller amounts, averaging 
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6.44 nm/mmol lactate. Both fermentation conditions also produced 5-OH-Ben-

cba with glucose fermentation resulting in an average of 23.26 nmol 

cobamide/mmol glucose and lactate fermentation averaging 7.31 nmol 

cobamide/mmol lactate. A small amount of total cobamide was produced by 

lactate-fermenting cultures, averaging 13.75 nmol total cobamide/mmol lactate. 

This experiment was repeated multiple times and cobamide yield was 

consistently low for lactate compared to other redox conditions. Methanogenic 

enrichment cultures yielded an average of 376.67 nmol 5-OH-Ben-cba mmol 

methane produced. 5-OH-Ben-cba was the only cobamide produced by 

methanogenesis.    

DMB-cba was produced by both nitrate reducing and sulfate reducing 

cultures. Sulfate reduction solely produced DMB-cba, averaging 1105.70 nmol 

cobamide/mmol of sulfate consumed. Nitrate reduction also produced only DMB-

cba, averaging 173.0 nm/mmol nitrate consumed. These two conditions were the 

only ones to produce DMB-cba. 
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Figure 3-1. Cobamide results for the five cobamide-producing redox conditions. Iron reducing 

conditions did not produce any detectable cobamide. 
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Table 3-1 Individual cobamide production reported in nmol per mmol substrate consumed. 

Culture 5-MeBen-cba 5-OH-Ben-cba DMB-cba 

Glucose Fermenting A 36.13 27.18 0.00 

Glucose Fermenting B 44.18 19.33 0.00 

Lactate Fermenting A 5.96 8.54 0.00 

Lactate Fermenting B 6.91 6.08 0.00 

Methanogenic A 0.00 369.1 0.00 

Methanogenic B 0.00 384.2 0.00 

Nitrate Reducing A 0.00 0.00 214.0 

Nitrate Reducing B 0.00 0.00 132.0 

Sulfate Reducing A 0.00 0.00 946.0 

Sulfate Reducing B 0.00 0.00 1265.4 

Iron Reducing A 0.00 0.00 0.00 

Iron Reducing B 0.00 0.00 0.00 
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CHAPTER FOUR  
DISCUSSION 
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Cobamide was quantified as nanomoles cobamide per millimole 

fermentable substrate (i.e., glucose) or electron acceptor (nitrate, etc.). This 

allowed results to be normalized since different conditions consumed different 

amounts of initial substrate or electron acceptor. Additional reduction products for 

each redox condition (i.e., propionate from lactate fermentation or nitrite from 

nitrate reduction) were not included in these calculations; only the reduction of 

the initial substrate or electron acceptor was considered. In the case of 

methanogenesis, methane produced was used to quantify cobamide. Initially, 

cobamide production was going to be normalized using volatile suspended 

solids, a measure of biomass (American Public Health Association, 1999). This 

method would account for the differing cell densities between different redox 

conditions but ultimately was not used. 

In a natural environment or bioremediation site, multiple redox conditions 

would exist simultaneously. Multiple processes, including sulfate reduction, 

nitrate reduction, and lactate fermentation may all simultaneously occur in the 

same system. By knowing how much of each electron acceptor is consumed, 

potential cobamide production is easier to predict than by VSS or a cell counting 

method (Madrid & Felice, 2005) because cobamide can be assigned to individual 

substrates, rather than the total biomass from all substrates. Cobamide produced 

by an individual redox condition can be assigned to a redox condition based on 

how much electron acceptor is consumed, but it cannot be assigned to a redox 

condition from a total biomass measurement.  

Lactate and glucose fermentation both produced MeBen-cba and 5-OH-

Ben-Cba. MeBen-cba is a precursor to the other cobamides observed and was 

first discovered in methanogenic archaea shortly after (E. Stupperich) (Roth et 

al., 1996; Schulze, Vogler, & Renz, 1998; Shelton et al., 2018). MeBen-cba may 

be directly used for cell metabolism or exported from the cell so it can be 

converted to more broadly used cobalamin (Shelton et al., 2018). In a preliminary 

experiment glucose fermentation was allowed to proceed into lactate 

fermentation and shows a similar cobamide profile to glucose and lactate 
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fermentation. One fermenter, Clostridium thermoaceticum was found to produce 

5-methoxybenzimidazole-cobamide (5-MeO-Ben-cba) along with a cobinamide, a 

cobamide lacking the lower base (Koesnandar & Nagai, 1991). 5-MeO-Ben-cba 

was not found in any cultures for this study.  

5-OH-Ben-cba was also found in nitrate reducing and methanogenic 

enrichments. The respective amount produced under each condition varied 

greatly. The methanogenic enrichments exclusively produced 5-OH-Ben-cba. 

Methanogens are known 5-OH-Ben-cba producers so this result is consistent 

with known literature (Erhard Stupperich, Eisinger, & Schurr, 1990). When 

methane production levelled off after about 30 days in the experimental cultures, 

cultures were not visibly dense from cell growth and obtaining any cobamide 

from extracted cells, even from 1.6 L cultures, was unexpected due to low cell 

density. Cobamide was quantified according to the molar concentration of 

methane produced.  

The reactants for methanogenesis are difficult to quantify because of the 

possibility of syntrophic acetate oxidation (Hattori, 2008). Methanogenesis can 

utilize either acetate or hydrogen and carbon dioxide as reactants. The 

enrichments for the experiments here used acetate instead of hydrogen and 

carbon dioxide as the substrate but measuring the change in acetate 

concentration over the course of the experiment would not accurately reflect all 

methanogenic activity. Syntrophic acetate oxidation produces hydrogen which 

can be used by methanogens to produce methane. Hydrogen gas is not 

measurable because it is consumed immediately upon production. Quantifying 

cobamides as a function of methane produced still allows a way to normalize 

cobamide production.  

 The possibility of glucose and lactate fermenting cultures producing 5-

OH-Ben-cba due to methanogens was excluded because of the addition of BES 

and confirmation via gas chromatography at the end of each experiment that no 

methane was produced. Therefore, any 5-OH-Ben-cba produced in these 

conditions can be attributed to glucose or lactate fermentation. Because 5-OH-
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benzimidazole, the lower base of 5-OH-Ben-cba, is a precursor to the formation 

of dimethylbenzimidazole, the lower base of DMB-cba, finding 5-OH-Ben-cba in 

nitrate reducing cultures is unsurprising. It is possible that 5-OH-benzimidazole 

was incorporated into complete cobamides. 

Sulfate reduction resulted in by far the most cobalamin production of any 

other substrate, with denitrification (with possible DNRA) being the only process 

to also produce cobalamin (DMB-cba). Sulfate reduction resulted in the largest 

amount of total cobamide produced per mmol of substrate. Sulfate reducer 

Desulvibrio vulgaris can produce guaninyl cobamide and hypoxanthyl cobamide 

de novo, but is also capable of synthesizing DMB-cba when supplemented with 

DMB in its medium (Guimaraes, Weber, Klaiber, Vogler, & Renz, 1994). Several 

other sulfate reducers, Desulfobacterium autotrophicum, Desulfobulbus 

propionicus, and Archaeoglobus fulgidus, are all producers of Me-Ben-cba 

(Krautler, Kohler, & Stupperich, 1988). Because previous work does not include 

sulfate reducers who can produce DMB-cba, this knowledge makes this new 

finding more exciting. There is not a documented DMB-cba producing sulfate 

reducer. In mixed culture, DMB-cba production cannot be assigned to a specific 

taxon, but that it is produced at all is an important finding. 

Iron reduction was not included in the results figure (Figure 3-1) because 

no cobamide was detected after three experiments with duplicate cultures. 

Previous work showed a small amount of DMB-cba produced by the same iron  

reducing culture (Şimşir, 2016). The ferrozine assay gave inconsistent 

quantitative results for ferric and total iron which made tracking iron reduction 

difficult. Standards were used with every analysis and gave consistent standard 

curves; however, total iron measurements varied for the cultures even though 

total iron measurements should remain consistent for the entirety of the 

experiments (Figure A-6). Before removing culture fluid for iron measurement, 

cultures were inverted several times to mix in the layer of iron that settled at the 

bottom. Visually, cultures were well mixed, and the samples were taken 

immediately. This step should have resulted in consistent total iron 
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measurements of 5 mM after the precipitated ferric iron had been dissolved for 

the ferrozine assay.  

The ferrous iron measurements showed no correlation to reduction of iron 

over the course of the experiments. When ferrous iron was normalized to the 

total iron readings as a fraction of total iron, a growth curve showing an increase 

of ferrous iron over the first 40 days of the experiment emerged, shown by a 

dashed black line in Figure A-5. Assuming total iron remained at 5 mM, this curve 

indicates that 3.5 mM ferric iron was reduced to ferrous iron after 40 days and 

that complete iron reduction did not occur. While cultures were mixed 

immediately before samples were taken, these results show that mixing may 

have been insufficient to obtain consistent total iron measurements. By 

normalizing measured ferrous iron to a percentage of total measured iron, 

ferrous iron can still be reliably quantified by assuming total iron remains at 5 mM 

in the cultures. Because cultures were not harvested after 40 days when ferrous 

iron measurements peaked, cell death likely resulted by the time of harvest and 

explains the irregular ferrous iron measurements taken for the rest of the 

experiment. If cobamide yield was already low, the cell death would leave few 

intact cells to extract cobamide from. This explains why no cobamide was 

detectable for the iron reducing condition. The experiment could not be 

completed again due to time constraints. 

While only three cobamides were detected in enrichment cultures, they 

were not the only cobamides that were looked for. Standards curves were also 

generated for p-cresol cobamide, phenolic cobamide, benzimidazole cobamide, 

and methoxybenzimidazole cobamide. Benzimidazolic cobamides are detectable 

at a 361 nm wavelength (Yan et al., 2016). In chromatograms from HPLC 

analysis, some other peaks were detectable outside of the cobamides that 

standard curves were obtained for; however, it is unlikely that these are complete 

cobamides because they did not have peak absorbance at 361 nm.  

The discovery that nitrate and sulfate reducing conditions result in 

production of DMB-cba is an important finding for bioremediation of chlorinated 
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solvents. Of tested cobamides, DMB-cba supports the fastest reductive 

dechlorination rates in Dhc (Yan et al., 2016). Lack of usable type of cobamide is 

one of several culprits proposed in stalling of dechlorination at bioremediation 

sites with other possibilities including insufficient electron donor or the presence 

of nitrous oxide (Fennell, Gossett, & Zinder, 1997; Yin et al., 2019). Further 

research is needed to determine how available cobamides produced by the 

community are to other species, specifically Dhc. An abundance of DMB-cba 

does not necessarily mean that the cobamide is available to other cells because 

the cobamides extracted in this study are measurements of intracellular 

cobamide.  

 Outside of the application to bioremediation, this research presents 

important new findings for microbial ecology. Because enriching the same 

original sediment under different redox conditions resulted in different cobamide 

profiles, redox condition is a confirmed factor accounting for why some microbes 

may produce one type of cobamide over another. Additional factors outside of 

the community makeup and redox condition could also be at play, but these 

experiments were completed in a virtually identical manner outside of changing 

the growth substrate or electron acceptor.  
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CHAPTER FIVE  
CONCLUSIONS & FUTURE DIRECTIONS 
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The experiments completed in this project represent only the first steps in 

elucidating the patterns within growth substrates and corrinoid production. 

Essentially, these experiments form the proof of concept that redox conditions 

influence the type and quantity of cobamides produced.  

Each process can and should be further broken down. For example, 

determining cobamide production at each step of denitrification from nitrate to 

nitrite, nitrite to nitrous oxide or nitric oxide, and nitrous oxide to nitrogen gas. 

This breakdown would determine if certain cobamides are produced during 

specific metabolic steps. The enrichments for the six redox conditions 

represented should also be repeated with sediment samples from other 

geographic locations because the results obtained here are only from one stream 

system. This work has proven that changing redox condition does change the 

cobamide profile within the same initial microbial community. It is unknown if the 

same cobamides would be produced in experiments using samples from different 

stream systems or types of environment. Literature of known cobamide 

producers discussed previously indicate that certain taxa within each redox 

condition (i.e., sulfate reduction, methanogenesis) can result in cobamides that 

were not observed in these experiments.  

Additionally, co-culture experiments with Dhc and the cultures used for 

each redox condition would be beneficial, especially with the sulfate reducing and 

nitrate reducing conditions which produce DMB-cba. These two redox conditions 

are the most likely to support Dhc because of extensive DMB-cba production.  

Chlorinated solvents are only a few of many hazardous chemicals of 

concern plaguing the United States water supply. This research expands the 

larger field of bioremediation research as we find ways to prevent stalls of 

treatment of chlorinated solvents at remediation sites using Dhc. This work also 

expands the body of knowledge of biological cobamide production, an 

understudied area. This work is the only study of its kind and provides the 

foundation to further cobamide research both for applications in remediation 

engineering and fundamental microbiology. 
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Figure A-1 Glucose fermentation growth curves.   
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Figure A-2. Methane production in methanogenic cultures. 
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Figure A-3. Lactate fermentation growth curves. 

 



www.manaraa.com

 

45 
 

 
Figure A-4. Nitrate reduction growth curves.  
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Figure A-5. Sulfate reduction growth curves from each replicate. Sulfide was quantified and 

sulfate measurements were predicted based on subtraction of the sulfide concentration from total 

sulfate added to the cultures, 5 mM. 
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Figure A-6. Iron reduction growth curves represented as a ratio of ferrous (reduced) to total iron. 

Dashed black line represents actual growth phase. 
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Table A-1. Substrate consumed under each condition used to calculate cobamide yield. Asterisk 

refers to the case of methanogenic enrichments, where methane production (in mmol) was used 

to quantify cobamide production. 

 

 

 

 

 

 

 

 

 

 

Culture 
Substrate Consumed 
(mM) 

Substrate Consumed* 
(mmol) 

Sulfate A 4.62 7.39 

Sulfate B 4.05 6.47 

Nitrate A 9.85 15.76 

Nitrate B 9.47 15.15 

Glucose A 19.40 5.82 

Glucose B 18.78 5.63 

Lactate A 17.84 28.54 

Lactate B 18.28 29.25 

Methanogen A* 0.56 1.05 

Methanogen B* 0.69 1.10 
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